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Abstract. We introduce a geometrical framework for the description of constrained mechanical
systems, and we analyse different kinds of symmetries and their relationships. We propose a
new definition for non-holonomic Lagrangian mechanical systems, and we give a geometrical
characterization for the Helmholtz conditions related to the inverse problem.

0. Introduction

In recent papers [4–6, 9–11] various frameworks for the description of non-holonomic
mechanical systems were proposed. In this paper some well known results valid for
second-order differential equations (SODE) representing the dynamical evolution of a non-
constrained mechanical system will be extended to the case of constrained mechanical
systems, making use of the formalism introduced, e.g. in [9–11].

We consider the jet bundleJ 1(E), whereτ0 : E → R is a fibred bundle on the real
line R, and a fibred submanifold6 of J 1(E) describing the kinetic constraints. It is well
known that a system of SODE may be described by a vector field0̃ on J 1(E), henceforth
called the non-constrained SODE. In a similar way, a mechanical system with kinetic
constraints may be described by a vector field0 on J 1(E), tangent to the manifold6. We
propose an analysis of the symmetries of a constrained SODE0 based on a generalization
of correspondent results holding for the non-constrained case. A geometrical interpretation
of new conditions arising will also be presented.

In section 3 we propose a definition of a Lagrangian mechanical system with
constraints. In the holonomic case, given a mechanical system with Lagrangian function
L̃ ∈ C∞(J 1(E)), it is well known that the equations of motion can be written asi0̃d2 = 0,
where2 is the Poincaŕe Cartan 1-form associated with̃L. In the presence of kinetic
constraints, the equations of motion for the mechanical system cannot be completely
determined by a Lagrangian functionL, defined on the constraint’s submanifold6.

Generalizing the situation when the constrained SODE0 is obtained by projecting on6
a Lagrangian SODẼ0 onJ 1(E), we define a ‘non-holonomic Lagrangian’ for a constrained
SODE as a couple(L, µ), whereL is a function defined on6, andµ is a 1-form playing
the role of the canonical momenta.
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8234 P Morando and S Vignolo

With this definition, the inverse problem for a constrained SODE may be formulated as
follows. A SODE0 on 6 will be said to be Lagrangian, with associated non-holonomic
Lagrangian(L, µ) if there exists a 1-form2 = ∂L

∂q̇α
θα+µ+Ldt (analogous to the Poincaré

Cartan 1-form) such that the equations of motion can be written asi0(d2) ∈ Span{ηa},
where the 1-formsηa will be defined in section 1.

Generalizing some results of [1], we give a geometrical version of the Helmholtz
conditions for a constrained SODE. In particular, we examine a particular class of
constrained SODEs (satisfyingi0(d2) = 0), and extend some results valid in the non-
constrained case.

Finally, we discuss how the geometrical framework introduced may be applied to the
study of mixed first- and second-order systems of differential equations, along the lines
proposed in [12].

We conclude the paper with an illustrative example of a Lagrangian mechanical system
with constraints in the sense introduced in section 3.

1. Preliminaries

A suitable geometrical framework for the study of the evolution of a mechanical system
subjected to (non-integrable) kinetic constraints is based on the introduction of a fibre bundle
π : E→ M, whereE andM are both fibre bundle over the real lineR.

Introducing fibred coordinates onE andM of the form(t, qα, qa) = (t, qA) and(t, qα)
where α = 1 . . . r, a = 1 . . . n − r and A = 1 . . . n, let us consider the fibred product
6̃ = E ×M J 1(M) with projections andπ1 : 6̃→ E andπ2 : 6̃→ J 1(M).

If J 1(E) is the first jet extension of the fibre bundleE with respect to the fibration
τ0 : E → R, let us denote byi : 6̃ → J 1(E) the injection described in local coordinates
by

(t, qA, q̇α)→ (t, qA, q̇α, ga(t, qA, q̇α)).

By means ofi the manifold6̃ may be identified with a fibred submanifold6 of J 1(E),
described by equationṡqa = ga(t, qA, q̇α), which will be henceforth referred as the
constraint’s manifold. With a slight abuse of notation we will also denote byi the inclusion
map i : 6→ J 1(E).

According to this identification, a sectionγ : R→ E will be said to bekinematically
admissibleiff j1(γ ) ∈ 6, wherej1(γ ) is the first jet extension ofγ .

Keeping the same notations as in [9, 10], to every SODE on6 we associate a
corresponding vector field on6 of the form

0 = ∂

∂t
+ q̇α ∂

∂qα
+ ga(t, qA, q̇β) ∂

∂qa
+ f α(t, qA, q̇α) ∂

∂q̇α
. (1)

It is easy to see that each integral curve of0 is the jet-extension of a kinematically
admissible section ofE.

The fibre bundleJ 1(M) carries the action of the well known canonical endomorphism
S [2], expressed in coordinates as the(1, 1)-type tensor field

S = θα ⊗ ∂

∂q̇α

whereθα = dqα − q̇αdt are the canonical contact 1-forms onJ 1(M). It is easy to check
that S is a well-defined tensor field also on6.
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It is well known [9, 10] that the the eigenspaces of the tensor fieldṠ := L0S induce a
decomposition of the tangent bundleT6 and of the cotangent bundleT ∗6 into direct sum
of subbundles.

A local canonical basis onT6, adapted to the stated decomposition, is provided by the
vectors

0 Hα = ∂

∂qα
+ Baα

∂

∂qa
− 0βα

∂

∂q̇β
,
∂

∂qa
,
∂

∂q̇α
(2)

with

Baα =
∂ga

∂q̇α
0αβ = −

1

2

∂f α

∂q̇β
.

The correspondent dual basis inT ∗6 consists of the 1-forms

dt, θα, ηa = dqa − gadt − Baαθα, φα = dq̇α − f αdt + 0αβθβ. (3)

We remark that the 1-formsηa span locally a codistribution intrinsically associated to
the constraint manifold. This is the Chetaev bundle recently introduced by several authors
(see, e.g. [6, 13]). It is immediate to verify that the 1-formsθα and ηa generate locally
the contact bundle over6 C(6) = i∗(C(J 1E)), whereC(J 1E) is the contact bundle over
J 1(E) spanned locally byθA = dqA − q̇Adt .

In terms of the bases (2) and (3) we have the representation

Ṡ = −Hα ⊗ θα + ∂

∂q̇α
⊗ φα.

2. Symmetries

The canonical endomorphismS on6 allows us to introduce an almost product structure on
6, i.e. a(1, 1)-type tensor fieldA such thatA2 = I , which is given in local coordinates by

A = Ṡ + 0 ⊗ dt + ∂

∂qa
⊗ ηa.

It is easy to see thatA is an automorphism ofD1(6) and ofD1(6) (the moduli of vector
fields and 1-forms on6 respectively), which preserves (up to the sign) the bases given by
(2) and (3).

Moreover, we will consider the action ofA on the whole tensor algebra on6, as the
action of tensor productA⊗ A · · · ⊗ A. In particular we have

(1) A(f ) = f, ∀f ∈ C∞(6)
(2) A(U ⊗W) = AU ⊗ AW∀U,W tensor on6.

Definition 2.1.We denote byA0 the differential operator acting on tensor fields over6 as

A0 = AL0A (4)

whereL0 is the Lie derivative along0.

Remark 2.1.
(i) A0 is a derivation of degree zero commuting with contractions,
(ii) A0(f ) = 0(f ), ∀f ∈ C∞(6),
(iii) L0 = AA0A.
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Definition 2.2.Let 0 be a SODE on6, and letX ∈ D1(6) and σ ∈ D1(6) be a vector
field and a 1-form on6 respectively. Then

(i) X is a dynamical symmetry for0 iff L0X = h0, whereh ∈ C∞(6),
(ii) X is a dual-adjoint symmetry for0 iff A0X = h0, whereh ∈ C∞(6),
(iii) σ is an adjoint symmetry of0 iff A0σ = hdt , whereh ∈ C∞(6),
(iv) σ is a dual symmetry of0 iff L0σ = hdt , whereh ∈ C∞(6).

In terms of the bases (2) and (3) a vector fieldX = X00 + XαHα + Xa ∂
∂qa
+ X̄α ∂

∂q̇α
is a

dynamical symmetry of0 iff it satisfies the conditions

0(Xα)+Xβ0αβ − X̄α = 0 (5a)

0(Xa)−Xb ∂g
a

∂qb
+XαQa

α = 0 (5b)

0(X̄α)+ X̄β0αβ +Xβφαβ −Xa
∂f α

∂qa
= 0 (5c)

whereQa
α = 0(Baα)− ∂ga

∂qα
− Bbα ∂g

a

∂qb
, andφβα = −Hα(f β)+ 0βγ 0γα − 0(0βα ).

In a similar way, a 1-formσ = σ0dt + σαθα + σaηa + σ̄αφα is an adjoint symmetry if
it satisfies the following conditions:

0(σ̄α)− σ̄β0βα − σα = 0 (6a)

0(σa)+ σb ∂g
b

∂qa
+ σ̄α ∂f

α

∂qa
= 0 (6b)

0(σα)− σβ0βα + σaQa
α + σ̄βφβα = 0. (6c)

An analogous expression can be obtained for dual-adjoint and dual symmetries.
Proceeding as in [7], we can define four subsets ofD1(6) andD1(6) respectively. In

terms of the operatorsL0 andA0 these are defined as follows:

X0 =
{
X ∈ D1(6)|X = A0

(
Xα

∂

∂q̇α

)
+ Y, Y ∈ Span

{
0,

∂

∂qa

}}
M0 =

{
X ∈ D1(6)|X = L0

(
Xα

∂

∂q̇α

)
+ Y, Y ∈ Span

{
0,

∂

∂qa

}}
M?

0 = {σ ∈ D1(6)|σ = L0(σαθα)+ ν, ν ∈ Span{dt, ηa}}
X ?0 = {σ ∈ D1(6)|σ = A0(σαθα)+ ν, ν ∈ Span{dt, ηa}}.

In local coordinates we have the equivalent characterizations

X ∈ X0 ⇐⇒ X = X00 +XαHα +Xa ∂

∂qa
+ (0(Xα)+Xβ0αβ)

∂

∂q̇α

σ ∈M?
0 ⇐⇒ σ = σ0dt + (0(σα)− σβ0βα )θα + σaηa + σαφα.

Theorem 2.1.Let 0 be a SODE on6, and letX andσ be a vector field and a 1-form on
6 respectively. Then

X ∈ X0 ⇐⇒ L0X ∈ Span

{
0,

∂

∂qa
,
∂

∂q̇α

}
X ∈M0 ⇐⇒ A0X ∈ Span

{
0,

∂

∂qa
,
∂

∂q̇α

}
σ ∈M?

0 ⇐⇒ A0σ ∈ Span{dt, θα, ηa}
σ ∈ X ?0 ⇐⇒ L0σ ∈ Span{dt, θα, ηa}.
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Proof. The computation is entirely straightforward and is left to the reader. �

Corollary 2.1. If a vector fieldX is a dynamical symmetry (dual-adjoint symmetry), then
X ∈ X0 (X ∈ M0), and if a 1-formσ is an adjoint symmetry (dual symmetry), then
σ ∈M?

0(σ ∈ X ?0).
Theorem 2.2.The tensor fieldA gives a bijection betweenX0 andM0, and betweenX ?0
andM?

0.

Proof. By definition A2 = I and A acts as the identity on Span{0, ∂
∂qa
, ∂
∂q̇α
}. Hence,

recalling theorem 2.1, we have thatX ∈ X0⇐⇒L0X ∈ Span{0, ∂
∂qa
, ∂
∂q̇α
}⇐⇒A0A(X) ∈

Span{0, ∂
∂qa
, ∂
∂q̇α
}⇐⇒A(X) ∈M0. Similarly for X ?0 andM?

0. �

Theorem 2.3.The tensor fieldA gives a bijection between dynamical and dual-adjoint
symmetries, and between dual and adjoint symmetries.

Proof. By definitionA acts as the identity on the Span{0}, andAL0 = A0A. Then, ifX
is a dynamical symmetryAL0(X) = A0(AX) = h0 with h ∈ C∞(6), andAX is a dual-
adjoint symmetry. An entirely similar argument prove that ifX is a dual-adjoint symmetry,
thenAX is a dynamical symmetry. The proof for adjoint and dual symmetry follows the
same line. �

We recall that, if we consider a non-constrained SODE, the study of dynamical and
adjoint symmetries gives rise to a pair of equations: the first one is an algebraic equation,
playing the same role of (5a) and (6a), and the second one is a SODE, analogous to (5c)
and (6c), the latter usually called the Jacobi equation associated to the SODE ([7, 8]). These
conditions, both in the non-constrained and constrained cases, are related to the setsX0,
M0,M?

0, andX ?0 through the following.

Theorem 2.4.Let 0 be a SODE on6, X a vector field andσ a 1-form on6. Then
X ∈ X0 andL0(X) ∈M0 ⇐⇒ X satisfies conditions (5a) and (5c).
σ ∈M?

0 andL0(σ ) ∈ X ?0 ⇐⇒ σ satisfies conditions (6a) and (6c).

Proof. For non-constrained SODE the results may be found in [7, 8]. The extension to
constrained case is similar, and follows from easy computations. �

We now turn to equations (5b) and (6b). These have no holonomic counterpart, but are
typical of the non-holonomic case. To understand their meaning we have to introduce a
wider geometrical framework.

Let T6(J 1(E)) denote the restriction ofT (J 1(E)) to the submanifold6, and let
D1
6(J

1(E)) be the module of vector fieldsX : 6→ T6(J
1(E)). We decomposeT6(J 1(E))

into the direct sum

T6(J
1(E)) = T6 ⊕ V6

whereV6 is the vertical bundle spanned by{ ∂
∂q̇a
}.

In local coordinates, for any vector fieldX = X0 ∂
∂t
+XA ∂

∂qA
+ X̄A ∂

∂q̇A
, A = 1 . . . n, we

have

X = i∗P(X)+Q(X)
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wherei denotes the inclusion mapi : 6→ J 1(E), and

P : T6(J
1(E))→ T6 Q : T6(J

1(E))→ V6
denote the linear operators having expression

P(X) = X0 ∂

∂t
+XA ∂

∂qA
+ X̄α ∂

∂q̇α

Q(X) =
(
X̄a −X0∂g

a

∂t
−Xα ∂g

a

∂qα
−Xb ∂g

a

∂qb
− X̄α ∂g

a

∂q̇α

)
∂

∂q̇a
.

We now introduce the set

X̃0(J 1(E)) =
{
X ∈ D1

6(J
1(E)|X = XA ∂

∂qA
+ 0(XA) ∂

∂q̇A

}
.

If we handle with a non-constrained SODẼ0, the setX0̃, analogous ofX̃0, was
introduced in [7], and a necessary condition for a vector fieldX ∈ D1(J 1(E)) to be a
dynamical symmetry of̃0 is X ∈ X0̃.

For a constrained SODE we can give a geometrical interpretation of conditions (5a)
and (5b) through the following theorem.

Theorem 2.5.Let 0 be a SODE on6 and letX ∈ D1
6(J

1(E)) be a vector field such that
iXdt = 0. ThenP(X) satisfies conditions (5a) and (5b) iff X ∈ X̃0(J 1(E)) andX is
tangent to6.

Proof. The conditionX ∈ X̃0(J 1(E)) is trivially equivalent to the fact thatP(X) satisfies
(5a).

Moreover, the request thatX be tangent to6, i.e.(
XA

∂

∂qA
+ 0(XA) ∂

∂q̇A

)
(q̇a − ga(t, qA, q̇α)) = 0

gives the equation

0(Xa)−Xb ∂g
a

∂qb
−Xα ∂g

a

∂qα
− 0(Xα) ∂g

a

∂q̇α
= 0

equivalent to (5b) for the vector fieldP(X). �

3. The Lagrangian case

The aim of this section is to introduce a Lagrangian formalism in the study of constrained
mechanical systems.

As a starting point, we consider a free (non-constrained) mechanical system, with a
Lagrangian functionL̃ ∈ C∞(J 1(E)) satisfying the usual regularity condition

det

(
∂2L̃

∂q̇A∂q̇B

)
6= 0

and we introduce the corresponding Poincaré Cartan 1-form

2L̃ =
∂L̃

∂q̇A
θA + L̃ dt

where, as usual,θA = dqA − q̇A dt .
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Then, we impose the kinetic constraints described by the manifold6.
Considering the restrictioni∗(2L̃) of the Poincaŕe Cartan 1-form to6, it is possible to

write the equations of motion for the constrained system in the form (see, e.g. [9, 11])

0

(
∂L

∂q̇α

)
− ∂L

∂qα
− Baα

∂L

∂qa
= i∗

(
∂L̃

∂q̇a

)
Qa
α (7)

whereL = i∗(L̃) denotes the pull back of̃L on6, and

Qa
α = 0(Baα)−

∂ga

∂qα
− Bbα

∂ga

∂qb
.

Under the regularity assumption

det

(
∂2L

∂q̇β∂q̇α
− i∗

(
∂L̃

∂q̇a

)
∂2ga

∂q̇β∂q̇α

)
6= 0

equation (7) determines uniquely the componentsf α of the constrained SODE0.
This procedure is equivalent to considering first the free SODE0̃L̃ defined by the

LagrangianL̃ on J 1(E), and then determining the corresponding constrained SODE0 by
projecting0̃L̃ on the constraints manifold6 [4].

Our purpose is to generalize this situation to the case of a SODE which is defined on
6 only. To this end, we introduce the following.

Definition 3.1.A SODE0, defined on6, is called Lagrangian if there exists a pair(L, µ),
whereL ∈ C∞(6) andµ = µaηa, s.t.

i0d2 ∈ Span{ηa} (8)

wherei0 is the interior product and2 is given by

2 = ∂L

∂q̇α
θα + µ+L dt. (9)

Under the stated assumptions, the pair(L, µ) will be called anon-holonomic Lagrangian
for 0. The 1-form (9) will be similarly called thenon-holonomic Poincar´e Cartan 1-form
associated with(L, µ).

From here on, we shall omit the word non-holonomic whenever there is no risk of
ambiguity.

In local coordinates, condition (8) takes the form

0

(
∂L

∂q̇α

)
− ∂L

∂qα
− Baα

∂L

∂qa
= µaQa

α (10)

which generalizes (7) when the LagrangianL is not defined on the whole spaceJ 1(E).
Exactly as before, if the regularity hypothesis

det

(
∂2L

∂q̇β∂q̇α
− µa ∂2ga

∂q̇β∂q̇α

)
6= 0 (11)

is satisfied, and equation (10) determines uniquely the componentsf α for the constrained
SODE0.

If 0 is a non-holonomic Lagrangian SODE on6, we can extend the idea of Noether
symmetries, in the following way.

Definition 3.2.Let0 be a SODE associated to the non-holonomic Lagrangian(L, µ), and let
2 be the corresponding non-holonomic Poincaré Cartan 1-form. A vector fieldX ∈ D1(6)

is a Noether vector fieldfor 0 iff it satisfiesLX(2) = df wheref ∈ C∞(6).
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We remark that a Noether vector field is not a dynamical symmetry, due to the fact that
d2 is not a simplectic 2-form on6. The term ‘Noether’ is motivated by the fact that to a
(particular class of) Noether vector fields one can associate a corresponding set of constants
of motion by the following.

Theorem 3.1.If X is a Noether vector field for0 satisfyingiX(η) = 0∀η ∈ Span{ηa}, then
iX(2)− f is a constant of motion for0.

Proof. Let X be a Noether vector field, by definition 3.2 we have thatiX(d2) =
d(f − iX(2)). Contracting with0, and using the equation of motioni0(d2) ∈ Span{ηa},
we have

i0(iX(d2)) = −iX(i0(d2)) = 0= 0(f − iX(2)).
�

The supplementary conditioniX(η) = 0, required in order for a Noether vector field
to generate a constant of motion, is by no means an artificial one. For example, in the
study of Noether symmetries for non-conservative mechanical systems, one has to look for
vector fieldsX having a vanishing pairing with the 1-form representing the non-conservative
forces. In our case the role of non-conservative forces is played by reactive forces, which
in principle are unknown, but can be described by 1-forms belonging to the Span{ηa}.
Theorem 3.2.LetX be a vector field and0 be a SODE on6 associated to a non-holonomic
Lagrangian(L, µ). ThenX is a Noether vector field for0 iff α = iX(d2) is a closed 1-form.

Proof. By using LX(d2) = iX(dd2) + d(iX(d2)) = dα, the conclusion follows
immediately. �

4. Helmholtz conditions

In the previous section we introduced the idea of Lagrangian constrained SODE. The purpose
of this section is to characterize this special class of SODE over6. The analysis extends
the approach proposed in [1] for the non-constrained case.

Theorem 4.1.Let0 be a SODE on6. Then0 is Lagrangian, with non-holonomic associated
Lagrangian(L, µ = µaηa), iff there exists a 1-formϕ = aαθα+µaηa +hdt and a function
L ∈ C∞(6) such that

L0ϕ = L0(aαθα + µ+ hdt) = dL+ ν (12)

holds, whereν ∈ Span{dt, ηa}.

Proof. ⇐H Using the local base (3), and considering the components alongθα andφα of
equation (12), we have

aα = ∂L

∂q̇α
(13)

0(aα)− ∂L

∂qα
− Baα

∂L

∂qa
= µaQa

α. (14)
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It is easy to check that these two equations are equivalent to

i0(d2) ∈ Span{ηa}
where2 = ∂L

∂q̇α
θα + µaηa +Ldt .

H⇒ It is a straightforward computation, after settingϕ = 2. �

We shall now discuss a particular class of constrained SODE for which it is possible
to extend some of the results valid in the non-constrained case. To this end, we prove the
following.

Theorem 4.2.Let 0 be a constrained SODE on6. Then the following conditions are locally
equivalent:

(1) there is a Lagrangian(L, µ) for 0 such thati0(d2) = 0,
(2) there is a closed 2-formω such thatL0ω = 0 andω(V,W) = 0∀V,W ∈ Span{ ∂

∂q̇α
},

(3) there is a 1-formϕ = aαθ
α + µaηa + hdt and a functionL ∈ C∞(6) such that

L0ϕ = dL.

Proof. (1) H⇒ (2) With the choiceω = d2, ω is indeed a closed 2-form satisfying
L0(d2) = d(i0(d2))+ i0d(d2) = 0. Moreover

d2(V,W) = V (iW2)−W(iV2)− i[V,W ]2 = 0

becauseiW2 = 0, ∀W ∈ Span{ ∂
∂q̇α
} and [V,W ] ∈ Span{ ∂

∂q̇α
}, ∀W,V ∈ Span{ ∂

∂q̇α
}.

(2) H⇒ (3) The closedness ofω ensures that (locally) there exists a 1-formψ such that
ω = dψ . Moreover, due to the conditionω(V,W) = 0, ∀V,W ∈ Span{ ∂

∂q̇α
}, the restriction

of ψ to the vertical fibres is (locally) an exact 1-form. It is therefore possible to find a
functionF ∈ C∞(6) such that dF(V ) = ψ(V ), ∀V ∈ Span{ ∂

∂q̇α
}. By definingϕ = ψ−dF ,

we have that dϕ = dψ = ω andϕ(V ) = 0, ∀V ∈ Span{ ∂
∂q̇α
}. Thenϕ can be written in the

following form

ϕ = aαθα + µaηa + h dt.

Moreover 0= L0ω = L0(dϕ) = dL0ϕ, and this guarantees the existence of a function
L ∈ C∞(6) such that (locally)L0ϕ = dL.

(3) H⇒ (1) Setting ν = 0, theorem 4.1 guarantees that(L, µ = µaη
a) is a non-

holonomic Lagrangian for0. Moreover, sinceϕ−2 = (h−L)dt , with 0(h−L) = 0, we
have thatL0ϕ = L02, and consequentlyi0(d2) = L02− d(i0(2)) = dL− dL = 0. �

Corollary 4.1. Let 0 be a SODE satisfying the conditions of theorem 4.2, and letX be a
dynamical symmetry for0. Then the 1-formα = iX(d2) is a dual symmetry such that
L0(α) = 0.

Corollary 4.2. Let 0 be a SODE satisfying the conditions of theorem 4.2, and letX be a
dual-adjoint symmetry for0. Then the 1-formα = iX(Ad2) is an adjoint symmetry such
thatA0(α) = 0.

Proof. A straightforward calculation shows thatiX(σ ) = A(iAX(Aσ)), ∀X ∈ D1(6),
∀σ ∈ D1(6). If X is a dual-adjoint symmetry, then, by theorem 2.3, there is a dynamical
symmetryY such thatX = AY . TheniX(Ad2) = iAY (Ad2) = A(iY (d2)). SinceiY (d2)
is a dual symmetry satisfyingL0(iY (d2)) = 0, then by theorem 2.3iX(Ad2) is an adjoint
symmetry such thatA0(α) = 0. �
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Corollary 4.3. Let 0 be a SODE satisfying the conditions of theorem 4.2, and letX be a
Noether vector field for0, i.e. LX(2) = df , wheref ∈ C∞(6). Thenf − iX(2) is a
constant of motion for0.

As a concluding remark, we shall now characterize two particular cases of constrained
SODE with a non-holonomic Lagrangian, for which the dynamics is determined by the
functionL only, or more precisely by the pair(L, µ = 0).

Theorem 4.3.Let 0 be a SODE on6. Assumef̃ ∈ C∞(J 1(M)) and letf = π∗2 (f̃ ) be
the pull-back off̃ on 6. Puttingσ = ∂f

∂q̇α
θα + f dt , we have that0 is Lagrangian with

non-holonomic Lagrangian(L = 0(f ), 0) iff A0(L0(σ )) ∈ Span{dt, ηa}.

Proof. A straightforward but tedious calculation shows that the 1-formA0(L0(σ )) has no
components alongφα, and that the vanishing of the components alongθα gives

0

(
∂L

∂q̇α

)
− ∂L

∂qα
− Baα

∂L

∂qa
= 0 (15)

where we used that∂L
∂qa
= ∂f β

∂qa
∂L
∂q̇β

. Equation (15) has precisely the form of the equation of
motion (10), when the 1-formµ vanishes. �

Theorem 4.4.A SODE 0 on 6 is Lagrangian, with associated non-holonomic Lagrangian
(L, 0), iff there exists a functionL ∈ C∞(6) such thatA0(dL) ∈ Span{dt, ηa, θα}

Proof. By definition ofA0 we have

A0(dL) = AL0
(
0(L) dt −Hα(L)θα + ∂L

∂qa
ηa + ∂L

∂q̇α
φα
)
.

The requirement that all components along theφα of the previous expression vanish
yields to the condition

0

(
∂L

∂q̇α

)
− ∂L

∂qα
− Baα

∂L

∂qa
= 0.

�

The geometrical framework introduced in the previous sections may be conveniently applied
in the study of mixed first- and second-order systems of differential equations (see, e.g. [12]).

To pursue this idea, suppose that a SODE0 of the form (1) is given. The latter
corresponds to the mixed system of differential equations

q̈α = f α(t, qA, q̇α) (16a)

q̇a = ga(t, qA, q̇α). (16b)

In this context an interesting problem is to establish under what conditions the second-
order equations (16a) and the first order equations (16b) can be decoupled. Making use of
the differential operatorA0, a useful result is provided by the following.

Theorem 4.5.In the system (16) associated to a SODE0 of the form (1), the second-
order equations and the first-order equations can be decoupled, and the second order
equations are deducible from a LagrangianL (in the usual sense), iff there exists a function

L ∈ C∞(J 1(M)) satisfying the regularity condition det
(

∂2L
∂q̇α∂q̇β

)
6= 0, such that

A0(dL) ∈ Span{dt, θα, ηa}.
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Proof. From equation (15), by using the condition∂L
∂qa
= 0, we have thatA0(dL) ∈

Span{dt, θα, ηa} iff

0

(
∂L

∂q̇α

)
− ∂L

∂qα
= 0.

Moreover, by using the regularity hypothesis onL we get the expressionf α =
f α(t, qβ, q̇β), andga = ga(t, qA, q̇α). �

Remark 4.1.The inverse problem for a system of mixed equations (of first and second
order) was approached in a completely different way in [3]: the idea there was to look for
a singular Lagrangian giving the first-order equations as Dirac constraints, and the second-
order equations as the equations related to the regular part of the Lagrangian.

5. Example

We conclude this paper with an illustrative example. More precisely, we show the existence
of a non-conservative holonomic mechanical system which, by imposing a suitable kinetic
constraint, is Lagrangian in the sense introduced in section 3.

Example 5.1.A rigid frameABO, composed of two homogeneous barsAB andOB, with
respective lengthsL and L

2 and massesM and M
2 , soldered inB at an angleAB̂O = π

3 ,
is constrained to a vertical axisk3 by means of two hinges placed inA andO. A material
point P , with massm = M

2 , can move along the sideAB of the frame. All constraints are
ideal. The configurations of the system are described by two Lagrangian coordinatesψ and
s expressing respectively the rotation of the frame around the vertical axis and the distance
PA. In addition to the weightsMg andmg, the system is subject to two further forcesF
andG, both acting onP , and expressed respectively by the equations

G = mω ∧ vP
F = −m

2
(ṡ − lψ̇)ω ∧ (cosψk1+ sinψk2)

whereω = ψ̇k3 is the angular velocity of the frame,vP is the velocity ofP and l is a
suitable constant coefficient. The system described above is holonomic, non-conservative
with holonomic kinetic energy

T̃ = m

2
ṡ2+ m

8
(s2+ L2)ψ̇2.

Taking into account the force of gravity acting on the particle moving alongAB, we
can consider the LagrangiañL = T̃ −mg

√
3

2 (L− s) and the Lagrangian components of the
forcesG andF given by the expressions

Qψ = +m
4
lsψ̇2

Qs = −m
4
sψ̇2.

Now we assume that the system is subject to the kinetic constraint

ṡ = νψ ν = constant.

The effect of this constraint is to make the velocity ofP alongAB proportional to
the angle of rotationψ . The constrained SODE0 on 6 representing the dynamic of the
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constrained system may be obtained in various ways (see, for example, [4, 6, 9, 11]). The
final result is expressed by the equation

0 = ∂

∂t
+ ψ̇ ∂

∂ψ
+ νψ ∂

∂s
− 2sνψψ̇ − lsψ̇2

s2+ L2

∂

∂ψ̇
.

Recalling (2) and (3), the local bases ofT6 andT ∗6 induced by0 are

0 H = ∂

∂ψ
− sνψ − lsψ̇

s2+ L2

∂

∂ψ̇
,
∂

∂s
,
∂

∂ψ̇

and

dt, θ = dψ − ψ̇dt, η = ds − νψdt,

φ = dψ̇ + 2sνψψ̇ − lsψ̇2

s2+ L2
dt + sνψ − lsψ̇

s2+ L2
θ.

In terms of these bases it is easy to see that the pair(L, µ), where

L = i∗(L̃) = i∗
(
T̃ −mg

√
3

2
(L− s)

)
and

µ = i∗
(
∂T̃

∂ṡ
+ l

ν
Qs

)
η

is a non-holonomic Lagrangian for the SODE0. In fact, given the non-holonomic Poincaré
Cartan 1-form

2 = ∂L

∂ψ̇
θ + µ+L dt

the equation of motion for the constrained system can be written as

i0d2 ∈ Span{η}
or in the equivalent form

0

(
∂L

∂ψ̇

)
− ∂L
∂ψ
= −νi∗

(
∂T̃

∂ṡ
+ l

ν
Qs

)
.

We remark that, since the potential of the force of gravity does not affect the equation of
motion on6, we can delete it in the expression ofL. Indeed the functionL is defined
modulo a function depending on thes-variable only.
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